
Introduction
Visual Scripting

Automation
Workbench



SimLab Composer allows using Python, and Java Scripts to automate processes, both
scripts automation is supported in two modes:

1. Command line (for batch processing a large number of files). This includes
command line without scripting using -ie command, and with scripting using
Python, and Java scripts. 

2. Interactive mode (from inside the GUI of SimLab Composer)

Scripting is supported in the Ultimate edition of SimLab Composer

Open the command line window, by typing "cmd" in Start. Go to the directory where
SimLab Composer was installed, the default installation directory is "C:\Program
Files\SimLab\SimLab Composer 10" to go there type cd C:\Program
Files\SimLab\SimLab Composer 10 

Introduction

Command line without scripting

https://help.simlab-soft.com/uploads/images/gallery/2023-12/Mo1image.png
https://help.simlab-soft.com/uploads/images/gallery/2022-09/KBaimage.png


Now to run import/export functions in SimLab Composer, type Sim.. then start clicking the
Tab button, until SimLabComposer.exe appears. 

Type in the code -ie <import_file> <export_file>

With actual file locations, the below line will convert RubikCube.obj 3D models into
RubikCube.skp in the indicated folders. Don't forget " "

-ie "C:\Users\simlab\Desktop\Delete\RubikCube.obj"
"C:\Users\simlab\Desktop\Delete\RubikCube.skp"

Check this article for more ab out the command line-based methods, also for commands
on Mac. 

Python scripts can be run from the command line using the following command

So if the user named a script as example.py, and saved it in folder C:\Scripts, The user
should use the following command

Command line Python Scripts

SimLabComposer.exe -py “File.py”

SimLabComposer.exe -py “C:\Scripts\example.py”

https://help.simlab-soft.com/uploads/images/gallery/2022-09/kvOimage.png
https://vrforcad.com/approaches-to-automatically-do-things-with-simlab-composer


Passing arguments to a script makes it dynamic, and reusable without the need to change
its code. 

The user can run Python Scripts interactively in different ways:

1. Select a script from the scripting library, drag it, and drop it on the 3D area 

2.  Select a script from the library, then from the Script menu, click Run 

Passing arguments to Python Scripts

scene =Scene()

runtime =RunTime()

scene.reset()

fileName= runtime.args.getAsString("-path")

scene.importFile(fileName)

Interactive Scripting - Running Python script
interactively

https://help.simlab-soft.com/uploads/images/gallery/2022-09/o48image.png


3. Select the node/geometry to Isolate from the 3D area or the Object Tree, then
click OK. 

                     

https://help.simlab-soft.com/uploads/images/gallery/2022-09/Fe1image.png
https://help.simlab-soft.com/uploads/images/gallery/2022-11/image.png
https://help.simlab-soft.com/uploads/images/gallery/2022-11/x8Pimage.png
https://help.simlab-soft.com/uploads/images/gallery/2022-11/x8Pimage.png


       

The following script gets the location to save the rendered image, using a GUI dialog.
Renders the current scene, saves the resulting image in the selected location, and finally
displays a dialog indicating that rendering is done. 

For a list of supported Python scripting commands visit this page

My first Python script / Python Scripts using GUI input

from simlabpy import *

scene = Scene()

runtime = RunTime()

render_path = runtime.ui.getSaveFileName("Exported rendered image location:", "", 

"*.jpg;;*.png")

scene.render(render_path)

runtime.ui.alert("Rendered image was created.")

Check out a blog about the approaches to automatically do things with SimLab
Composer.

https://help.simlab-soft.com/uploads/images/gallery/2022-11/x8Pimage.png
https://www.simlab-soft.com/3d-products/docs/help/scripting/English/Python-Scripting-Documentation/index.html
https://blog.simlab-soft.com/approaches-to-automatically-do-things-with-simlab-composer/
https://blog.simlab-soft.com/approaches-to-automatically-do-things-with-simlab-composer/


https://blog.simlab-soft.com/approaches-to-automatically-do-things-with-simlab-composer/


Visual Scripting in SimLab Composer is a tool created to minimize the programming effort
for non-technical users with no coding skills. Therefore, instead of writing the computer
code in a text editor, the Visual Scripting tool allows the user to develop her\his desired
programs via block diagrams using a graphical user interface. This makes the code easier
to be written as well as to be understoodز Any designer, artist, or animator reading the
diagrams can quickly grasp the flow of logic therein.

Select Visual Scripting from the automation workbench, the window shown below will
appear with the following main parts:

 1)     Options to ‘Run’ the existing flow, ‘Create’ a new flow, ‘Open’, or ‘Save’ flows.
 2)     The Main Object Groups Bar, which includes the category titles of all the available
sources and functions.
 3)     For each Object Group, corresponding ‘Sources’ and ‘Functions’ are available.
 4)     The ‘Work Space’, where blocks can be dragged, dropped, and linked to create the
desired flow charts.

Any flow in the Visual Scripting should consist of three main components: source, smart
block, and connections.

Visual Scripting

Getting Started

https://help.simlab-soft.com/uploads/images/gallery/2022-09/aGydrex-first-topic-screen.png


A) Source: Sources are used to define file paths and/or 3D nodes to be used as inputs for
different blocks in the diagram. Users can find several source types in the sources tab.
 
B) Block: Blocks are basically functions that (can) take inputs and produce outputs. Each
block performs a single process, for example, the block on the left side in the previous
figure takes an integer number as input and converts it to a string as an output. Users can
find several block types categorized into different tabs throughout the Main Object Groups
Bar.
 
C) Connections: Connections are used to make the whole flowchart meaningful by linking
sources and blocks. They thus define which sources and blocks are connected,
accordingly, they arrange the execution order of the block diagram. The green parts on
the blocks are not essential but they are very important to ensure the right execution
order and to create dependencies between the blocks. To make the process easier for
users. Ports on each block are colored based on the data type that should be passed
through them.
 
After completing the flow diagram, hit the run button to start the execution, and a pop-up
message will appear once the execution completes. Flowcharts can be saved and shared
to be used in different projects.

To learn more about Visual Scripting in SimLab Composer, check the tutorial below, and
visit the SimLab Visual Scripting web page

https://www.youtube.com/embed/yROPc90VFGk

https://www.simlab-soft.com/technologies/simlab-visual-scripting.aspx
https://www.youtube.com/embed/yROPc90VFGk

